

Journal of Alloys and Compounds 275-277 (1998) 416-419

Eu^{3+} as a local probe to characterize the structure of acentric $K_4Eu_2(Co_3)_3F_4$

N. Mercier^{a,c,*}, E. Antic-Fidancev^b, M. Lemaître-Blaise^b, M. Leblanc^a, J.-C. Krupa^d

^aLaboratoire des Fluorures, Université du Maine, Avenue O. Messiaen, F-72085 Le Mans Cedex, France

^bLaboratoire de Chimie Métallurgique et Spectroscopie des Terres Rares, 1 Pl Aristide Briand, F-92195 Meudon, France

^cLaboratoire IMMO UMR-6501, Bd. Lavoisier, F-49045 Angers, France

^dInstitut de Physique Nucléaire, IN2P3, F-91406 Orsay, France

Abstract

The optical study of the trivalent europium ion in polycrystalline $K_4Eu_2(CO_3)_3F_4$ is reported. Three main low symmetry sites for Eu^{3+} are deduced from the emission spectra at 4.2 K. Extra lines are also present at low temperature, which may be assigned to a fourth site. When the temperature increases, these extra lines disappear without energy change of other lines. This reversible phenomenon is not yet explained. Above 8 K, site to site energy transfer becomes effective. The electrostatic crystal field effects on the ⁷F multiplet are also evaluated on the basis of the phenomenological crystal field theory. © 1998 Elsevier Science S.A.

Keywords: Fluorocarbonate; Europium; Luminescence; Crystal-field

1. Introduction

Rare earth (RE) fluorocarbonates present a large variety of structural types. New phases were recently obtained by using the hydrothermal method [1-4] and we have undertaken the analysis of their optical properties. In previous papers we presented the luminescence of BaEu(CO₃)₂F, $Na_{3}La_{2}(CO_{3})_{4}F:Eu^{3+}$ [1] and $KGd(CO_{3})F_{2}$: Eu^{3+} [2]. This paper is focused on the optical study of the Eu³⁺ luminescence properties in a new fluorocarbonate family, $K_4RE_2(CO_3)_3F_4$. In the synthesis of RECO₃F, (RE=La) or KRE(CO₃)F₂, (RE=Gd, Tb), $K_4RE_2(CO_3)_3F_4$ appears as a byproduct [2]. For RE=Pr, Nd, Sm and Eu, $K_4 RE_2 (CO_3)_3 F_4$ is the major product of the crystal growth. According to the X-ray structure determination [3], a disorder of fluor atoms, F(2), engaged in the RE coordination sphere, is assumed. The powder sample of $K_4 Eu_2(CO_3)_3 F_4$ presents a frequency doubling efficiency similar to that of $KTiOPO_4$.

Both phenomena, F(2) disorder and doubling frequency properties, have motivated the study of the luminescence properties of trivalent europium in these compounds.

2. Experimental details and structural description

The starting materials are K₂CO₃, REF₃ and H₂O and the hydrothermal synthesis is performed at high temperature $T=740^{\circ}$ C with $P_{\text{max}}=220$ MPa during 24 h [3]. The structural characterization of this new structural family $K_4RE_2(CO_3)_3F_4$ (RE=Pr, Sm, Nd, Eu, Gd) was presented in a recent paper [3]. The crystal structure is rhombohedral and belongs to $R32 - D_3^7$ acentric space group (No. 155). The rare earth atom is ninefold coordinated and surrounded by 3 fluor atoms at $\langle d_{\text{Gd}-F} \rangle = 2.27$ Å and by 6 oxygen atoms at $\langle d_{\rm Gd=0} \rangle = 2.54$ Å. The rare earth atom occupies C₃ point symmetry site (6c position). The structure (Fig. 1) is described from the stacking of $KRE_2(CO_3)_3$ carbonate planes and K_3F_4 sheets in which atomic disorder appears: F(2) atoms which always belong to rare earth polyhedra are located on a general 18f position with a 1/3 occupancy rate. Such disorder, evidenced by X-ray diffraction, has already been encountered in fluorocarbonates: it can be due either to static distribution (microtwinning) or to vibrational motion.

3. Optical data

The optical investigations, absorption, emission and the

^{*}Corresponding author.

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00359-4

Fig. 1. Perspective view of the structure of $K_4Eu_2(CO_3)_3F_4$.

excitation spectra (laser dye technics), were performed in the 4–300 K temperature range. In the absorption spectrum of K₄Eu₂(CO₃)₃F₄ at 4.2 K, a single line exists for the ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ electronic transition, situated at 17 253 cm⁻¹. One intense line at 19 002 cm⁻¹ and a shoulder at 19 025 cm⁻¹ (narrow line when temperature increases) are attributed to the next excited level of the ${}^{5}D_{J}$ manifold, the ${}^{5}D_{1}$ level. Even at higher temperature, no other line is detected for these two levels. The ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is observed in the absorption spectrum: two intense emission lines are found at 16 393 and 16 313 cm⁻¹.

The absorption study suggests a single point site for the europium ion in $K_4Eu_2(CO_3)_3F_4$ and small values of the second rank crystal-field parameter (cfp) B_q^2 . The analysis of the praseodymium and neodymium low temperature absorption spectra (unpublished data), in $K_4Pr_2(CO_3)_3F_4$

Fig. 2. Luminescence spectrum of $K_4Eu_2(CO_3)_3F_4$ in the ${}^5D_0 \rightarrow {}^7F_{0,1}$ transition range at T=9 K under Ar⁺ ion laser excitation.

Fig. 3. Dye laser excitation spectra of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ lines in $K_{4}Eu_{2}(CO_{3})_{3}F_{4}$ at T=4.2 K.

and $K_4Nd_2(CO_3)_3F_4$ polycrystalline compounds, suggests also a single site for the rare earth cation.

Oppositely, the emission spectrum excited by the 457.9 nm line of an argon Ar⁺ ion laser as well as by a doubled-, or tripled-YAG:Nd³⁺ laser, exhibits a complex feature. In Fig. 2, a part of the luminescence spectrum, relative to the ${}^{5}D_{0} \rightarrow {}^{7}F_{0-1}$ transitions recorded at 9 K, is presented. It is clear that the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions are manifold, the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition consists of three major lines. At 4.2 K, dye laser excitation at 17 250, 17 260 and

Fig. 4. ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ line monitoring in $K_{4}Eu_{2}(CO_{3})_{3}F_{4}$ at T=4.2 K.

Table 1

$^{2S+1}L_{J}$ level	Site a		Site b		Site c		Site d	
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.
⁷ F ₀	0	0	0	0	0	0	0	0
⁷ F ₁	303	303	288	288	272	272	252	252
	386	386	395	395	385	385	377	377
	415	415	421	421	473	473	531	531
B_0^2		252		285		519		784
B_2^2		174		225		242		273
$N_{\rm v}$		558		677		985		1385

Experimental, calculated energy level schemes, second rank crystal field parameters for the ${}^{7}F_{1}$ manifold of Eu³⁺ and crystal field strength parameter, N_{v} , in K₄Eu₂(CO₃)₃F₄ (all values in cm⁻¹)

17 266 cm⁻¹ allows us to distinguish three main low symmetry sites (a, b, c) for Eu^{3+} (Fig. 3). However, all the lines in the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition range are not explained and a fourth low symmetry site is evidenced by monitoring the ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ area (Fig. 4). This new ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition is found at 17 274 cm⁻¹. The corresponding excitation spectrum of this line appears at the bottom of Fig. 3. This minor component (d site) disappears above 20 K and, at 50 K, the overall spectrum is similar to the emission spectrum of Fig. 2. This phenomenom is reversible and cannot be explained by a structural transition of $K_4 Eu_2(CO_3)_3 F_4$. It must be noted that no energy variation of the other lines is observed when the temperature increases. However, site to site energy transfer appears and depends strongly on the temperature: energy transfer from d site to a, b, c sites occurs at T > 20 K while energy transfer between the main a, b, c components is effective at T > 8 K.

 ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions are almost identical for a, b, c, d sites (Fig. 5). Moreover, a broad band is recorded at 571 nm (17 513 cm⁻¹) at 250–260 cm⁻¹ from ${}^{5}D_{0}$ level and can be attributed to the presence of low frequency vibronics.

Fig. 5. Selective excitation spectra at $\lambda_{\text{exc.}} = 578.90 \text{ nm}$, $({}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ transition of site d in K₄Eu₂(CO₃)₃F₄), as a function of the temperature.

4. Crystal-field simulation

Three and five lines exist for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions, respectively, for the a, b, c, d sites in $K_{4}Eu_{2}(CO_{3})_{3}F_{4}$. Five lines are unambiguously assigned to the ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ transition and nine lines are observed for the ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transition. This situation indicates that Eu³⁺ site symmetry is lower than C_{3} , deduced from the X-ray structure determination.

Table 2

Experimental and calculated energy level scheme for Eu^{3+} in site b in $K_4Eu_2(CO_3)_3F_4$ (all values in cm⁻¹)

$^{2S+1}L_{J}$ level	Site b			
	Exp.	Calc.		
${}^{7}F_{0}$	0	0		
${}^{7}F_{1}$	288	288		
	395	399		
	421	417		
⁷ F ₂	890	891		
-	951	937		
	1048	1053		
	1088	1092		
	1179	1184		
⁷ F ₃	1833	1837		
-	1854	1860		
	1910	1912		
	_	1917		
	1966	1963		
	1977	1968		
	_	2079		
$^{7}F_{4}$	2560	2548		
	2606	2623		
	2775	2768		
	2868	2867		
	2937	2934		
	2968	2974		
	3049	3051		
	3049	3056		
	3166	3154		

Table 3 Crystal field parameters for Eu^{3+} ion located in site b in $K_4Eu_2(CO_3)_3F_4$

Parameter	Values (cm ⁻¹)		
$\overline{B_0^2}$	238		
B_2^2	141		
B_0^4	-288		
B_2^{4}	1281		
B_4^4	476		
B_{0}^{6}	207		
$B_2^{\tilde{6}}$	-1073		
B_{4}^{6}	896		
B_6^6	126		
Residue	1162		
σ	9		
N _v	3070		

The experimental and calculated energy levels for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions are given in Table 1 for the a, b, c, d sites, together with the calculated second rank crystal field parameters (cfp). Rank 4 and 6 cfp are calculated for site b and the corresponding energy level scheme appears in Table 2. For this site, the full set of phenomenological cfp is collected in Table 3. Second rank B_{q}^{k} parameters are weak, due to small ${}^{7}F_{1}$ splitting. Other parameters display higher values, in agreement with larger ${}^{7}F_{2-4}$ splittings. Due to the relatively high cfp of rank 4 and 6, there is an important J mixing which permits the observation of the ${}^{7}F_{3}$ level.

5. Conclusion

The optical study of luminescence in $K_4Eu_2(CO_3)_3F_4$ shows that Eu^{3+} site symmetry is low (lower than C_3) and is not consistent with the X-ray study.

In the first approach, the splitting of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ or ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ lines is explained by the presence of four Eu³⁺ sites. Consequently, a high resolution structural study must be performed in order to determine accurately the order which must occur at the F(2) fluorine site. Synchrotron diffraction experiments are scheduled, together with neutron diffraction at low temperature. However, low frequency vibronics probably influence the energy levels and this route must be explored.

References

- E. Antic-Fidancev, M. Lemaître-Blaise, P. Porcher, N. Mercier, M. Leblanc, J. Solid State Chem. 116 (1995) 286.
- [2] N. Mercier, M. Leblanc, E. Antic-Fidancev, M. Lemaître-Blaise, P. Porcher, J. Alloys Comp. 225 (1995) 198.
- [3] N. Mercier, J. Durand, M. Leblanc, Eur. J. Solid State Inorg. Chem. 34 (1997) 241.
- [4] N. Mercier, M. Leblanc, Eur. J. Solid State Inorg. Chem. 28 (1991) 727.